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Easily  Observed  Swelling

 Swelling: Volume increase in a
material caused by void
formation and growth

“The first open literature report of
void formation during neutron
irradiation sent a shock wave
through the world’s fast breeder
reactor programs.” (E. Bloom
ASTM 2004 plenary talk)
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Swelling and Bulk  Composition
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Grain Boundary Segregation
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Grain Boundary Segregation
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Segregation and Swelling

Brager and Garner
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Segregation and Swelling
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Segregation and Bulk  Composition
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Segregation and Bulk  Composition
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RIS and Void Bias
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RIS and Lattice Parameter
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RIS and Lattice Parameter
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Key insight

Accurate modeling of radiation induced
microstructural development requires the
ability to model microchemical changes

in complex alloys
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A system of four coupled partial differential equations describing the space and
time dependence of the atoms and defects in the solid is determined by
substituting the defect and atom fluxes given by eqns (11) into eqns (1) and (5):

Calculations are made by equating a grain boundary to a free surface.

Initial conditions: •  thermodynamic equilibrium
•  Atom concentrations are spatially uniform

Boundary conditions:
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Data limitations

•Vacancy diffusion information must be extrapolated well

beyond the experimental temperatures and into temperature

regions where different phases are thermodynamically stable
•Uncertainties in vacancy diffusion data used in Arhennius

expressions are “magnified” at low temperature

•Interstitial diffusion information for individual species is non-
existent

Similar effects are expected for other key material properties
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Conclusions

Computational modeling can provide key
insights required to understand the

complexity that drives microstructural
development in engineering alloys
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Backups
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Second Shell
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